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This paper aims to give an overview and summary of numerical methods for
the solution of stochastic differential equations. It covers discrete time strong
and weak approximation methods that are suitable for different applications.
A range of approaches and results is discussed within a unified framework.
On the one hand, these methods can be interpreted as generalizing the well-
developed theory on numerical analysis for deterministic ordinary differential
equations. On the other hand they highlight the specific stochastic nature
of the equations. In some cases these methods lead to completely new and
challenging problems.
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1. Introduction

About three hundred years ago, Newton and Leibniz developed the differ-
ential calculus, allowing us to model continuous time dynamical systems in
mechanics, astronomy and many other areas of science. This calculus has
formed the basis of the revolutionary developments in science, technology
and manufacturing that the world has experienced over the last two cen-
turies.
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As we try to build more realistic models, stochastic effects need to be
taken into account. In areas such as finance, the randomness in the system
dynamics is in fact the essential phenomenon to be modelled. Continu-
ous time stochastic dynamics need to be modelled in many areas of ap-
plication, including microelectronics, signal processing and filtering, several
fields of biology and physics, population dynamics, epidemiology, psychol-
ogy, economics, finance, insurance, fluid dynamics, radio astronomy, hy-
drology, structural mechanics, chemistry and medicine. Practical problems
arising in some of these areas in the mid-1900s led to the development of a
corresponding stochastic calculus.

Almost a hundred years ago, Bachelier (1900) used what we now call
Brownian motion or the Wiener process to model stock prices in the Paris
Bourse. Later Einstein (1906), in his work on Brownian motion, used an
equivalent mathematical construct. Wiener (1923) then developed more
fully the mathematical theory of Brownian motion. A further advance was
made by It (1944), who laid the foundation of a stochastic calculus known
today as the Ito calculus. This represents the stochastic generalization of the
classical differential calculus, allowing us to model in continuous time such
phenomena as the dynamics of stock prices or the motions of a microscopic
particle subject to random fluctuations. The corresponding stochastic dif-
ferential equations (SDEs) generalize the ordinary deterministic differential
equations (ODEs).

A most striking example, where [t6 SDEs provide the essential modelling
device, is given by modern financial theory. The Nobel prize-winning work of
Merton (1973) and Black and Scholes (1973) initiated the entire derivatives
and risk management industry that we see today. For the development of
corresponding financial markets, it is vital to improve our understanding
of its underlying stochastic dynamics, and to calculate efficiently relevant
financial quantities such as derivative prices and risk measures.

After the earlier technological revolution in manufacturing, it is the au-
thor’s view that we are likely to experience now and into the next century a
revolution in commercial technologies. The finance area is the most notable
example where the new changes have occurred. In the insurance area a sim-
ilar development has already started. Marketing can be expected to base its
future models on SDEs. We are at the beginning of a development where
commercial and economic activities will become subject to detailed stochas-
tic modelling and quantitative analysis. This global phenomenon will be a
major driving force in the development of appropriate numerical methods
for the solution of SDEs.

This paper provides a very basic introduction, as well as a brief overview
of the area of numerical methods for SDEs. The rapidly increasing literature
on the topic makes it impossible to give a comprehensive survey. However,
an attempt has been made to highlight key approaches, and note results
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that have been instrumental in the development of the field, or may be of
major significance in future research.

Books on numerical solutions of SDEs that provide systematic informa-
tion on the subject include Gard (1988), Milstein (19884, 19954), Kloeden
and Platen (1992/1995b), Bouleau and Lépingle (1993), Janicki and Weron
(1994) and Kloeden, Platen and Schurz (1994/1997).

Given the diversity of numerical problems that arise in SDEs, there is a
strong need to extend the wealth of expertise accumulated in the numerical
analysis of ODEs to the field of SDEs. Important monographs on the nu-
merical analysis of ODEs that had an impact on the numerical analysis of
SDEs include those by Gear (1971), Bjorck and Dahlquist (1974), Butcher
(1987), Hairer, Norsett and Wanner (1987), Hairer and Wanner (1991) and
Stoer and Bulirsch (1993).

As this paper will show, a multi-faceted variety of research topics on
numerical methods for SDEs has emerged over the last twenty years. These
topics can be linked to complexity theory: see, for instance, Traub, Wasil-
kowski and Wozniakowski (1988), Wozniakowski (1991) and Sloan and Woz-
niakowski (1998), where it was shown that simulation approaches, including
those of stochastic numerical analysis, are optimal with respect to average
case complexity.

2. Stochastic differential equations

Let us consider an Ité SDE of the form
dX; = a(Xy) dt + b(X:) AW, (2.1)

for ¢ € [0,T), with initial value Xy € R. The stochastic process X =
{X:, 0 <t < T} is assumed to be a unique solution of the SDE (2.1) which
consists of a slowly varying component governed by the drift coefficient a(-)
and a rapidly fluctuating random component characterized by the diffusion
coefficient b(-). The second differential in (2.1) is an It6 stochastic differen-
tial with respect to the Wiener process W = {W;, 0 <t < T}. It is defined
via the corresponding stochastic integral by using a limit of Riemann sums
with values of the integrands taken on the left-hand side of the discretiza-
tion intervals. Another stochastic differential, the Stratonovich stochastic
differential, would result if the values of the integrands were taken at the
centre of the interval.

As introductory textbooks on SDEs, one can refer to Arnold (1974), Gard
(1988), Oksendahl (1985) and Kloeden et al. (1994/1997). More advanced
material on SDEs is presented, for instance, in Elliott (1982), Karatzas and
Shreve (1988), Ikeda and Watanabe (1989), Protter (1990) and Kloeden and
Platen (1992/1995b).
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To keep our formulae simple in this introductory exposition, we dis-
cuss mainly the simple case of the one-dimensional SDE driven by a one-
dimensional standard Wiener process. In principle, most of the numerical
methods we mention can be generalized to multi-dimensional X and W.

Since the path of a Wiener process is not differentiable, the It6 calculus
differs in its properties from classical calculus. This is most obvious in
the stochastic chain rule, the Ité formula, which for a twice continuously
differentiable function f has the form

df (Xe) = (F(X0) a(Xe) + § £(Xe) B (X)) dt + f'(Xo) b(Xe) dWe (2:2)

for 0 <t < T. We remark that the extra term % fb? in the drift function
of the resulting SDE (2.2) is characteristic of the Itd calculus, and this
consequently also has a substantial impact on numerical methods for SDEs,
as will be seen later.

The Stratonovich calculus follows the rules of classical calculus more
closely. However, it does not conveniently relate to martingale theory, a
fundamental part of stochastic analysis. Both the It6 and the Stratonovich
stochastic calculus can be related to each other, and one can switch from
one to the other if necessary. The above stochastic process X in (2.1) can
be written as the solution of the Stratonovich SDE in the form

odX; = a(Xy)dt + b(X¢) o AW, (2.3)
where, assuming b’ exists, we have the Stratonovich drift function
a(z) = a(z) — % b(z) V' (z), (2.4)

with the notation ‘o’ in (2.3) referring to the Stratonovich stochastic dif-
ferential. This differential also arises as the limit of classical differentials
when the path of the Wiener process is smoothed, as in the Wong—Zakai ap-
proximation. Such approximations of SDEs are studied in Wong and Zakai
(1965), Kurtz and Protter (19915) and Saito and Mitsui (1995), for instance.

The strong similarity of the Stratonovich calculus with the classical cal-
culus is made clear by the Stratonovich chain rule, which for a differentiable
function f has the form

Odf(Xt) = f/(Xt) (Q(Xt) dt + b(Xt) [e] th)
= fl(Xy)o dXg, (2.5)

with ‘o’ again denoting the Stratonovich differential. We note that in (2.5)
only first-order derivatives of f appear, as in deterministic calculus.

It turns out that for some numerical tasks the Itd, and for others the
Stratonovich formulation, of an SDE is more convenient, as we shall see
later. Usually only the It6 calculus allows us to exploit powerful martingale
results for numerical analysis.
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3. Euler approximation

Since analytical solutions of SDEs are rare, numerical approximations have
been developed. These are typically based on a time discretization with
points

O=mp<m< < Tp< -+ <7n=T

in the time interval [0, 7], using a step-size A = T//N. More general time
discretizations can be used, that could, for instance, be random.

Simulation experiments and theoretical studies have shown that not all
classical or heuristic time discrete approximations of SDEs converge in a
useful sense to the corresponding solution process as the step-size A tends
to zero: see, for instance, Clements and Anderson (1973), Wright (1974),
Fahrmeier (1976), Clark and Cameron (1980) and Riimelin (1982). Conse-
quently a systematic approach is needed in order to select an efficient and
reliable numerical method for the problem at hand.

Several different approaches have been proposed in the literature to han-
dle SDEs numerically. Without relying much on the specific structure of
SDEs, Kohler and Boyce (1974), Boyle (1977) and Boyce (1978) have sug-
gested general Monte Carlo simulation of the given random system. Kush-
ner (1974) and Kushner and Dupuis (1992) proposed, as the approximating
process for solutions of SDEs, discrete, finite state Markov chains. Platen
(1992) developed higher-order Markov chain approximations. When digi-
tal computers were still in their infancy, Dashevski and Liptser (1966) and
Fahrmeier (1976) also used analogue computers to handle SDEs numerically.

Both in the literature and in practice, most attention has been directed to
discrete time approximations of SDEs. The Euler approximation that was
first studied in Maruyama (1955) is the simplest example of such a method,
and is ideally suited for implementation on a digital computer. For the SDE
(2.1) the Euler approximation Y is given by the recursive equation

Yoi1 =Y, +a(Yn) A +b(Yn) AW, (3.1)

forn =0,1,...,N — 1 with Yy = Xy. Here AW,, = W, ., — W, denotes
the increment of the Wiener process in the time interval |7y, 7p+1] and are
represented by independent N (0, A) Gaussian random variables with mean
zero and variance A.

It has been shown in the literature that the Euler approximation con-
verges for vanishing A — 0, under rather different types of convergence, to
the solution X of the Ité6 SDE (2.1). Some of the papers in which the Euler
method has been studied are Allain (1974), Yamada (1976), Gikhman and
Skorokhod (1979), Clark and Cameron (1980), Ikeda and Watanabe (1989),
Janssen (1984a, 1984b), Atalla (1986), Jacod and Shiryaev (1987), Kaneko
and Nakao (1988), Kanagawa (1988, 1989, 1995, 1996, 1997), Golec and
Ladde (1989), Mikulevicius and Platen (1991), Mackevicius (1994), Camba-
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nis and Hu (1996), Gelbrich (1995), Bally and Talay (1995, 1996a, 19965),
Jacod and Protter (1998), Kohatsu-Higa and Ogawa (1997) and Chan and
Stramer (1998). This is certainly not a complete list of references on the
Euler method. It is always an interesting task to study a new technique
based on this simple discrete time approximation of an SDE. For instance,
Gorostiza (1980) and Newton (1990) suggested Euler type approximations
with random step-size, where the approximate path jumps from threshold
to threshold.

To simulate a realization of the Euler approximation, one needs to gener-
ate the independent random variables involved. In practice, linear or non-
linear congruential pseudo-random number generators are often used. An
introduction to this area is given by Ripley (1983a). Books that include
chapters on random number generation include Ermakov (1975), Yakowitz
(1977), Rubinstein (1981), Ripley (1983b4), Morgan (1984), Ross (1991),
Mikhailov (1992), Fishman (1992) and Gentle (1998). We mention also
the papers by Box and Muller (1958), Marsaglia and Bray (1964), Brent
(1974), Eichenauer and Lehn (1986), Niederreiter (1988), Sugita (1995) and
Antipov (1995, 1996). Random number generation on supercomputers was
considered by Petersen (1988), Anderson (1990), Petersen (1994a) and En-
tacher, Uhl and Wegenkitt]l (1998).

As in the deterministic case, it turns out that the Euler method is rather
simple and crude, somewhat inefficient and often exhibits poor stability
properties. Much better stochastic numerical methods can be constructed
systematically.

4. Strong and weak convergence

It is convenient to have some measure of the efficiency of a numerical scheme
by identifying its order of convergence.

Unlike in the typical deterministic modelling situation, there exist in the
stochastic environment many different types of convergence that make theo-
retical or practical sense. Therefore in stochastic numerical analysis, one has
to specify the class of problems that one wishes to investigate, before start-
ing to construct a numerical method and seeking to optimize its efficiency
with respect to one or another convergence criterion.

In stochastic numerical analysis, the order of convergence plays a crucial
role in the design of numerical algorithms. However, as already explained,
the choice of the convergence criterion depends on the type of the prob-
lem. Roughly speaking, there are two major types of convergence to be
distinguished. These can be identified by whether one requires

(a) approximations to the sample paths, or
(b) approximations to the corresponding distributions.

For convenience we choose a rather simple characterization of each of these
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two types of convergence for the classification of numerical algorithms, and
call them the strong and the weak convergence criterion, respectively.

Tasks involving direct simulations of paths, such as the generation of a
stock market price scenario, the computation of a filter estimate for some
hidden unobserved variable, or the testing of a statistical estimator for pa-
rameters in some SDEs, require that the simulated sample paths be close to
those of the solution of the original SDE. This implies that in these cases,
among others, some strong convergence criterion should be used. The fol-
lowing simple criterion allows us to classify numerical methods according to
their strong order «y of convergence, using the absolute error E| X1 — Y| at
the terminal time T

We shall say that a discrete time approximation Y of the exact solution
X of an SDE converges in the strong sense with order v € (0,0¢] if there
exists a constant K < oo such that

E|X,—Yy| < KAY (4.1)

for all step-sizes A € (0, 1). In the deterministic case with vanishing diffusion
coefficient b = 0 this criterion reduces to the usual deterministic convergence
order criterion, as used, for instance, in Gear (1971) or Butcher (1987).

Fortunately, in a large variety of practical problems a pathwise approxi-
mation of the solution X of an SDE is not required. Much computational
effort has been wasted on simulations by missing this point. If one aims to
compute, for instance, a moment of X, a probability related to X, an option
price on a stock price X or a general functional of the form E(g(X7)), then
no strong approximation is required. The simulation of such functionals
does not force us to approximate the path of X. Rather, it is sufficient to
approximate adequately the probability distribution that corresponds to X.
Consequently we need only a much weaker type of convergence than that
expressed by the strong convergence criterion (4.1).

We shall say that a discrete time approximation Y of a solution X of an
SDE converges in the weak sense with order 8 € (0, o] if, for any polynomial
g, there exists a constant K, < oo such that

|E(9(X7)) — E(9(Yn))| < Ky A, (4.2)

for all step-sizes A € (0,1), provided that these functionals exist. Clearly
this criterion covers the convergence of pth moments because we can set
g(z) = zP. It reduces to the deterministic order criterion in the case b = 0
and g(x) = x.

As we shall see later, the numerical methods that can be constructed with
respect to this weak convergence criterion are much easier to implement
than those required by the strong convergence criterion. In any practical
simulation, one should try, if possible, to identify directly the task at hand
as being one that requires a weak approximation method.
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5. Stochastic Taylor expansions

The key to the construction of most higher-order numerical approximations
is usually obtained from the truncated expansion of the variables of interest
over small increments. The well-known Taylor formula provides the basis for
the derivation of most deterministic numerical algorithms. In the stochas-
tic case, a stochastic Taylor expansion for It6 SDEs was first described in
Wagner and Platen (1978). This result was then extended and generalized
in Platen (1981, 1982b), Platen and Wagner (1982), Azencott (1982), Suss-
mann (1988), Yen (1988), BenArous (1989), Kloeden and Platen (19914,
1991b), Hu (1992, 1996), Hu and Watanabe (1996), Kohatsu-Higa (1997),
Liu and Li (1997), and Kuznetsov (1998).

The Wagner—Platen formula is obtained by iterated applications of the
It6 formula to the integrands in the integral version of the SDE (2.1). For
example, in a simple case, we obtain the expansion

t t
X, = Xi+a(Xe) / ds +b(Xy,) [ dW,
to 4]

t prs

2
+b(Xs) B (Xso) / dW,, AW, + Rey e, (5.1)

to Jito

where Ry, ; represents some remainder term consisting of higher-order mul-
tiple stochastic integrals. Multiple Ité integrals of the type

I _ Tn+l aw I _ Tn+1 S2 AW.. dW _1 ((I )2—A
1y — . 83 (1,1) — i . s1 $2 7 5 (1) 3

Tn+1 82 Tn+1 82
Ton = / / ds; dWs,, Ino = / /T dWs, dsa,

Tn+1 83 )
I = / / / dW,, AW, dW,, (5.2)
™n Tn Tn

on the interval [7,, 7,+1] form the random building blocks in the Wagner-
Platen expansions.

For comparison, an application of the Stratonovich—Taylor formula, de-
veloped in Kloeden and Platen (1991a) and (19915b), to the integral version
of the Stratonovich SDE (2.3) yields the expansion

t t
X, = Xi+a(Xs) [ ds+b(Xy) / odW,,
to

to
t 82
+ b(Xto) b/(Xto)/ / ° dWSl © dWSz + Eto,t» (5'3)
tog Jito

where R, ; is some remainder term with higher-order multiple Stratonovich
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integrals. In this case multiple Stratonovich integrals of the form

Tn41 §2 1
Jo=1In, :/T /T 0dW,, o AWy, = = (I)?,

Jo,1) = L(0,1) J1,0) = L(1,0)5

Tn+1 83 52 1 3
J(l,l,l) :/ / / OdWs1 0 dW52 © dWss = ? (J(l)) (54)

on the interval [7,, 7,,+1] represent the basic random elements of the expan-
sion.

Close relationships exist between multiple It6 and Stratonovich integrals
which form some kind of algebra. This algebra and certain approximations
of multiple stochastic integrals have been described in Platen and Wagner
(1982), Liske (1982), Platen (1984), Milstein (19884, 1995a), Kloeden and
Platen (1991a, 19915, 1992/1995b), Kloeden, Platen and Wright (1992c¢),
Hu and Meyer (1993), Hofmann (1994), Gaines and Lyons (1994), Gaines
(1994, 1995a), Castell and Gaines (1995), Li and Liu (1997), Burrage (1998)
and Kuznetsov (1998).

6. Strong approximation methods

In this section, we focus on strong discrete time approximations of SDEs.
These are suitable for scenario simulations. They are usually more expensive
to implement, both in development and computing time, than their weak
counterparts.

6.1. Strong Taylor approximation

If, from the Wagner—Platen formula (5.1) we select only the first two integral
terms, then we obtain the Euler approximation (3.1). It has been shown
(see, for instance, Milstein (1974) or Platen (1981)) that in general the
Euler approximation has strong order of only v = 0.5, as a consequence of
the Holder continuity of order 0.5 of the paths of X.

Taking one more term in the expansion (5.1) we obtain the well-known
Milstein scheme

Vo1 = Yo +a(Ya) A+ b(Y,) AW, + b(Y,) b'(Yy) Iy, (6.1)

proposed by Milstein (1974), where the double It6 integral I(; ;) is given in
(5.2) as ((AWy)? — A)/2. In general this scheme has strong order v = 1.0.
Thus adding one more term from the Wagner—Platen formula to the Euler
scheme already provides an improvement in efficiency. The Milstein scheme
can be obtained alternatively from the Stratonovich-Taylor formula (5.3)
by selecting the first three integral terms of that expansion.
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For multi-dimensional driving Wiener processes, the double stochastic
integrals appearing in the Milstein scheme have to be approximated, unless
the drift and diffusion coefficients fulfil a certain commutativity condition.
Characterizations and approximations of such double It6 integrals are given,
for instance, in Milstein (1988a, 19954), Kloeden and Platen (1992/1995b),
Gaines and Lyons (1994) and Kuznetsov (1998).

Wagner and Platen (1978), Platen (1981) and Platen and Wagner (1982)
have described which terms of the Wagner—Platen formula have to be chosen
to obtain a desired higher strong order of convergence. Thus, for instance,
the strong Taylor approximation of order v = 1.5 has the form

Yn+1 = Yn+aA+bAWn+bb/I(1’1)+ba,I(1,O)+ (aa/-}-%bga”) %2

+ (ab/ + $828") Logy +b (6" + (0)2) L1y, (6.2)
where we suppress the dependence of the coefficients on Y, and use the
multiple It6 integrals mentioned in (5.2).

The integer strong order Taylor schemes given in Kloeden and Platen
(1992/1995b) can be conveniently derived from a Stratonovich-Taylor for-
mula of the type (5.3). For instance, the strong order 2.0 Taylor scheme is
Yori = Yo+ aA+bAW, + b8 Juy) +bd Jug) +ab Jop) +ad 4

+b(bb) Ja11) +adb) Joiy+b(ab) Juon +bba) Jua
+b(b(b b/)/)/J(1,1,1,1)§ (6.3)

here, in addition to those multiple Stratonovich integrals already mentioned
in (5.4), we have also used

Tn+1 83 82

Jory = / / / dsy o dWs, o dWy,,
Tn+1 83 52

J(l,O,l) = / / / © dWSl dsz o dWs:sa
n Tn ™

Tn+1 83 82
Jai0 = / / / o dWs, o dW, dss,

and

Tn+1 S4 83 52 1 4
‘](1,1,1,1) = ‘/,. /7. ‘/T /,. o dWSl o CM/I/S2 o) dW53 o dW34 = E (Jl) .
(6.4)

Milstein (1988a, 1995a), Kloeden and Platen (1991a), Hofmann (1994),
Gaines (1994), Liu and Li (1997), Burrage (1998) and Kuznetsov (1998)
point out that certain multiple Stratonovich integrals can be expressed us-
ing some minimal set of random variables. This is important for efficient
practical implementations.



NUMERICAL METHODS FOR SDESs 207

In general, one can say that for higher-order numerical schemes one re-
quires adequate smoothness of the drift and diffusion coefficients, but also
adequate information about the driving Wiener processes. This information
is contained in the multiple stochastic integrals appearing in the Wagner—
Platen and Stratonovich—-Taylor formulae.

For specific types of drift and diffusion coeflicients, for instance, when they
fulfil a certain commutativity condition, higher-order strong Taylor schemes
can be considerably simplified: see Kloeden and Platen (1992/1995b). Only
a reduced set of multiple stochastic integrals is then needed to achieve
the corresponding strong order. In any given problem with several driv-
ing Wiener processes, it is worthwhile checking whether this might apply.

Another situation where considerable extra efficiency can be gained occurs
when the SDE has only a small noise term: that is, the diffusion coefficient
is small and the noise can be interpreted as a perturbation. This situation
was studied by Milstein and Tretjakov (1994). Such an approximation has
to focus on the drift part of the dynamics. One then usually achieves only
a low theoretical strong order, but owing to the smallness of the noise a
reasonable overall performance of the algorithm is achieved.

A relatively simple approach to constructing discrete time approximations
is the splitting method applied by Bensoussan, Glowinski and Rascanu (1990,
1992), LeGland (1992), Sun and Glowinski (1994) and Petersen (1998), who
treat the drift term and the diffusion term separately in their algorithms.
This method in general achieves only the strong order of the Euler approx-
imation, but is convenient in its implementation.

As an illustration, in Figure 6.1, we approximate a simulated path for the
geometric Brownian motion that follows the SDE

dX; =r X;dt + o X dW; (65)

for t € [0,1] with Xy = 1. This process represents the standard model for
asset prices in mathematical finance. Fortunately, in this special case we
have an explicit solution of the form

X =Xo exp{(r—%ch) t+aWt}.

This was used in Figure 6.1 to plot a sample path of X for an interest rate
r = 0.05 and volatility o = 0.2. For the time step-size A = 0.1, we also show
in Figure 6.1 the linearly interpolated path of the Milstein approximation.

A disadvantage of higher-order strong Taylor approximations is the fact
that derivatives of the drift and diffusion coefficients have to be calculated
at each step. This can be avoided by considering derivative-free approx-
imations, such as the Runge-Kutta-type methods to be discussed in the
following section.
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Fig. 6.1. Paths of exact solution X and the Milstein approximation

6.2. Strong Runge—Kutta approximations

As has been previously mentioned at the beginning of Section 3, one cannot
simply take well-known deterministic Runge-Kutta schemes and adapt them
to an SDE. These only converge with a given strong order towards the
correct solution if they also approximate the corresponding strong Taylor
scheme. Any viable scheme that aims to achieve a certain strong order must
in general involve the appropriate multiple stochastic integrals appearing in
the corresponding Taylor scheme.

As a first attempt at avoiding derivatives in the scheme, one can use the
following simple method suggested by Platen (1984), which approximates
the Milstein scheme. It has the It6 form

Yor1 = Yo +a(Ya) A+ b(Ya) AW, + (b(Ya) = ¥(Ya)) 53z (AW,)2 - A),
(6.6)

or the Stratonovich form

Yos1 = Yo+ a(Ya) A+ (V) AW, + (b(V) = ¥(Ya)) 5= (AWR)2, (6.7)

with

Y, =Y, + b(Y,) VA.
In Riimelin (1982), Gard (1988), Kloeden and Platen (1992/1995b6, 1992),
and Artemiev (1993a, 1993b) further Runge-Kutta-type schemes can be
found.

It is natural to ask whether the tree approach developed in Butcher (1987)
can be translated to the stochastic setting. Some results along these lines
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were given by Saito and Mitsui (1993b), Burrage and Platen (1994), Komori,
Saito and Mitsui (1994), Komori and Mitsui (1995), Saito and Mitsui (1996),
Burrage and Burrage (1996, 1998), Burrage, Burrage and Belward (1997),
Komori, Mitsui and Sugiura (1997) and Burrage (1998). For instance, in
the case of a single driving Wiener process, a rooted tree methodology has
been described for Stratonovich SDEs by Burrage (1998). Following this
approach, a v = 1.0 strong order two-stage Runge-Kutta method has the
form

Yoi1 = Yo + (a(Yy) +3a(Yn)) § + (b(Ya) + 3b(Yy)) &= (6.8)
with
Y, = Yo+ 2 (a(Ya) A+ 5(Yn) AW,,).

The advantage of the method (6.8) compared, for instance, with the Platen
method (6.6) is that the principal error constant has been minimized within
a class of one-stage first-order Runge-Kutta methods. Four-stage Runge-
Kutta methods of strong order y = 1.5 can also be found in Burrage (1998).
Similarly, in the context of filtering problems Newton (19864, 19865, 1991)
and Castell and Gaines (1996) have proposed approximations that are, in
some sense, asymptotically efficient with respect to the leading error coeffi-
cient within a class of Runge-Kutta-type methods. One strong order vy = 1.0
method proposed by Newton has the form

Yn—H =Y, + (Q(Yn) + al) % + (b(Yn) + 2b1 + 2b2 + b3) A_‘évnv (69)

where
ax =a (304 (AW,)?),  bi=b (Yo + 3 5(¥n) AW, ,
s =a(Yotha+tbAW,), br=b (Yot tay+b 24a),

bs="b (Y, +a_ +baAW,).

Lépingle and Ribémont (1991) suggested a two-step strong scheme of first
order. In Kloeden and Platen (1992/1995b) further two-step strong schemes
have been proposed.

We now present a long list of publications that deal with higher-order
discrete time approximations of Ité6 or Stratonovich SDEs; these contain
many ideas and diverse approaches that may prove of interest in future
research. They include Franklin (1965), Shinozuka (1971), Kohler and
Boyce (1974), Rao, Borwankar and Ramkrishna (1974), Dsagnidse and Ts-
chitashvili (1975), Harris (1976), Glorennec (1977), Kloeden and Pearson
(1977), Clark (1978), Nikitin and Razevig (1978), Helfand (1979), Platen
(19804a), Razevig (1980), Greenside and Helfand (1981), Casasus (1982),
Clark (1982a), Guo (1982), Talay (19824, 1982b, 19834, 1983b), Drummond,
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Duane and Horgan (1983), Casasus (1984), Guo (1984), Janssen (1984a,
1984b), Shimizu and Kawachi (1984), Tetzlaff and Zschiesche (1984), Unny
(1984), Clark (19825), Averina and Artemiev (1986), Drummond, Hoch and
Horgan (1986), Kozlov and Petryakov (1986), Greiner, Strittmatter and
Honerkamp (1987), Liske and Platen (1987), Platen (1987), Milstein (1987),
Shkurko (1987), Roémisch and Wakolbinger (1987), Averina and Artemiev
(1988), Milstein (1988b), Golec and Ladde (1989), Feng (1990), Nakazawa
(1990), Bensoussan, Glowinski and Rascanu (1992), Feng, Lei and Qian
(1992), Artemiev (1993b), Kloeden, Platen and Schurz (1993), Saito and
Mitsui (1993a), Petersen (1994b), Torok (1994), Ogawa (1995), Gelbrich
and Rachev (1996), Grecksch and Wadewitz (1996), Newton (1996), Saito
and Mitsui (1996), Schurz (1996b), Yannios and Kloeden (1996), Artemiev
and Averina (1997), Denk and Schéffer (1997), Abukhaled and Allen (1998)
and Schein and Denk (1998).

To illustrate the strong order of convergence for the strong Taylor schemes
mentioned earlier, let us perform a simulation study that uses geometric
Brownian motion (6.5) introduced in the previous section. We estimate the
absolute error (4.1) for different step-sizes A and different schemes, including
the Euler scheme (3.1), the Milstein scheme (6.1}, the order 1.5 strong Taylor
approximation (6.2) and the order 2.0 strong Taylor approximation (6.3).
In Figure 6.2 the logarithm of the respective estimated absolute errors from
2000 simulated paths are plotted against the logarithm of the step-size. We
note that, for the different schemes, the slopes of the linearly interpolated
absolute errors correspond to the theoretical strong orders of the schemes.
Results for corresponding Runge-Kutta methods are almost identical.

Simulation studies involving higher-order schemes can be found, for in-
stance, in Klauder and Petersen (1985), Pardoux and Talay (1985), Liske
and Platen (1987), Newton (1991) and Kloeden et al. (1994/1997).

6.3. A-stability and implicit strong methods

What really matters in a numerical scheme is that it should be numerically
stable, can be conveniently implemented, and generates fast highly accurate
results.

Since SDEs generalize ODEs, their numerical analysis must encounter at
least all the problems known for the deterministic case. Before any proper-
ties of higher order of convergence can be studied the question of numerical
stability of a scheme has to be satisfactorily answered. Many practical prob-
lems turn out to be multi-dimensional: see Hofmann, Platen and Schweizer
(1992) or Heath and Platen (1996) for examples from finance, or Schein
and Denk (1998) for an example from microelectronics. We know from the
numerical analysis of ODEs that stiff systems can easily occur which cause
numerical instabilities for most explicit methods.
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Fig. 6.2. Log absolute error versus log step-size

The propagation of errors in the stochastic case also depends on the spe-
cific nature of the stochastic part of the dynamics. It is quite a delicate
matter to provide reasonable answers with respect to the stability of nu-
merical schemes for general SDEs. Therefore it is useful to study important
classes of test equations that provide insight into typical instability patterns.

The well-known concept of A-stability (see Bjorck and Dahlquist (1974))
can be directly generalized to the case of SDEs with additive noise, that is,
b(x) = const in equation (2.1): see Milstein (1988a), Hernandez and Spigler
(1992), Kloeden and Platen (1992) or Milstein (1995a). One introduces a
complex-valued test equation of the form

dX, = A X, dt + dW,, (6.10)

with additive noise, where A is a complex number with real part Re(A) < 0
and W is a real-valued Wiener process. A one-step numerical approximation
Y applied to (6.10) then usually yields a recursive relation of the form

Yni1 = GAA) Y, + Z,, (6.11)

where the Z, represent random terms that do not depend on A or Yy, Y1,
..., Y,. The region of A-stability of a scheme is defined as the subset of the
complex plane consisting of those complex numbers AA with Re(A) < 0 and
A > 0 which are mapped by the function G from (6.11) into the unit circle,
that is, those AA for which

IGAA)| < 1. (6.12)
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If the A-stability region covers the left half of the complex plane, then we
say that the scheme is A-stable.

Owing to the additive noise in the test equation, the concept of A-stability
does not say much about instabilities that may arise, for example, from mul-
tiplicative noise, that is, b(z) = oz, or from other non-constant diffusion
coefficients. We shall discuss the problem of stability under multiplicative
noise in Section 7.4. A-stability is a rough indicator for basic stability prop-
erties of any discrete time approximation.

On the basis of implicit stochastic Taylor expansions (see Kloeden and
Platen (1992/1995b)), it is possible to construct implicit discrete time ap-
proximations. As an example, we mention the Stratonovich version of a
family of implicit Milstein schemes described in Milstein (1988a, 1995a) and
Kloeden and Platen (1992/19955). It has the form

Y1 = Ynt{aa(Yny) +(1—a)a(Yn)} A +b(Yn) AW,
+B(Y,) U (V) AW (6.13)

where a € [0, 1] represents the degree of implicitness. This family of schemes
is of strong order v = 1.0 and A-stable for o > %

A major difficulty arises from the fact that in a strong scheme it is almost
impossible to construct implicit expressions for the noise terms, because in
the actual discrete time approximation these would usually lead to terms
with inverted Gaussian random variables. Such terms miss crucial moment
properties. A possible research direction that seems to overcome part of
the problem has been suggested by Milstein, Platen and Schurz (1998), who
have proposed a family of balanced implicit methods. A balanced implicit
method can be written in the form

Yoi1 =Yn +a(Yo) A+ 0(Y,) AW, + (Yo — Yoi1) Ch, (6.14)

where
Cp = cO(Yn) A+ cl(Yn) |AW,|

and ¥, ¢! represent positive real-valued uniformly bounded functions. One
can also choose more general functions c® and ¢! that must fulfil conditions
described in Milstein et al. (1998). The freedom in choosing ¢’ and ¢!
can be exploited to construct a method with stability properties tailored
to the dynamics of the underlying SDE. However, one must pay a price:
this method is only of strong order v = 0.5. In a number of applications,
especially those associated with multiplicative noise, the balanced implicit
method showed much better stability behaviour than other methods: see,
for instance, Schurz (1996a) and Fischer and Platen (1998).

Implicit schemes or different concepts of numerical stability have been
suggested and studied in a variety of papers, and we again mention a long
list, including Talay (198256, 1984), Klauder and Petersen (1985), Pardoux
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and Talay (1985), Milstein (1988a, 1995a), Artemiev and Shkurko (1991),
Drummond and Mortimer (1991), Kloeden and Platen (1992), Hernandez
and Spigler (1992, 1993), Artemiev (1993a, 1993b, 1994), Saito and Mitsui
(1993b), Hofmann and Platen (1994), Milstein and Platen (1994), Komori
and Mitsui (1995), Hofmann and Platen (1996), Saito and Mitsui (1996),
Schurz (1996a), Schurz (1996¢), Ryashko and Schurz (1997), Burrage (1998),
Higham (1998) and Petersen (1998). Despite all this work, stochastic nu-
merical stability remains an open and challenging area of research.

7. Weak approximation methods

As previously mentioned, in many applications it is not necessary to generate
an almost exact replica of the sample path of the solution of the underly-
ing SDE. The Monte Carlo simulation of option prices is a typical exam-
ple, where simple random walks can be used to approximate option pricing
functionals. Within this section we discuss numerical methods that focus on
approximating the probability distributions of solutions of SDEs, allowing
us to handle wide classes of functionals. We then need to study the weak
order of convergence of several stochastic numerical methods.

7.1. Weak Taylor approximation

The weak convergence criterion (4.2) allows us more degrees of freedom in
constructing a discrete time approximation than the strong convergence cri-
terion (4.1). For instance, under weak convergence, the random increments
AW, of the Wiener process can be replaced by simpler random variables
AW,, which are similar to these in distribution. By substituting the N (0, A)
Gaussian distributed random variable AW,, in the Euler approximation (3.1)
by an independent two-point distributed random variable AW,, with

P(AW, = +VA) = 0.5, (7.1)
we obtain the simplified Fuler method
Yoi1 = Yo+ a(Yy) A+ b(Y,) AW,,. (7.2)

The key point for this choice of the two-point random variable AW, is that
its first two moments match the corresponding ones for AW,,. It can be
shown that this method (7.2) converges with weak order 8 = 1.0 if sufficient
regularity conditions are imposed. This weak order is higher than the strong
order v = 0.5 achieved by the Euler approximation (3.1). In Mikulevicius
and Platen (1991), a lower order, 8 < 1.0, of weak convergence has been
proved if there are only Holder continuous drift and diffusion coefficients.
The Euler approximation (3.1) can be interpreted as the order 1.0 weak
Taylor scheme. One can select additional terms from the Wagner—Platen
formula to obtain weak Taylor schemes of higher order. Platen (1984, 1992)
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and Kloeden and Platen (1992/1995b) have described how to construct the
weak Taylor scheme corresponding to a given weak order 5 € {1,2,3,...}. It
turns out that one has to include all terms from the Wagner—Platen formula
with multiple It6 integrals of multiplicity equal to or less than the desired
weak order 3. Thus the Euler method, that is, the order 1.0 weak Taylor
scheme, is constructed using the multiple integrals of multiplicity one. The
order 2.0 weak Taylor scheme must then include all terms with single and
double integrals, and therefore has the form

Yor1 = Yon+aA+bAW, + bt I(l,l) +ba I(l,O)
+(ab + 1620 Iy + (ad + S b2a) & (7.3)

This scheme was first proposed by Milstein (1978) and later studied by
Platen (1984) and Talay (1984). We still obtain a scheme of weak order
8 = 2.0 if we replace the random variable AW, in (7.3) by AW,,, the double
integrals I gy and gy by %AWn and the double Wiener integral [ i)
by % ((AW,,)?> — A). Here AW, might be a three-point distributed random
variable with

P (AW, = +V3A) = é and P (AW, =0)= ; (7.4)

Note that the first four moments of AW,, match the corresponding ones of
AW,,. By approximating all triple It6 integrals in the order 3.0 weak Taylor
scheme, a simplified order 3.0 weak Taylor scheme was derived by Platen
(1984), with the form

Yoi1 = Y4+ aA+bAW + b6 ((AW)2 - A)/2+ bd AZ
+4° (ad'+ §02a") + (abf + L 0") (AWA — AZ)
+ {a(ab’+ba’+%b2b")l+%b2 (abl +ba' + 10?5")"

AW A?
6

+b <aa/ + % b? a”)l}

>| b

+ {b (ba’ +ab +3b° b”)' +a(bd) + 3 b2(bb’)”} ((AW)2 - A)

! nYy A3
#{aod + b)Y w42 (o )}

+ vy ((AW)2-34) ATW. (7.5)
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Here AW and AZ can be chosen, for instance, as correlated zero mean
Gaussian random variables with

E(AW)? =A, E(AZ)*)=A3/3, E(AZAW) = A?%)2.

As in the case of strong approximations, weak higher-order schemes can
be constructed only if there is adequate smoothness of the drift and diffusion
coefficients, and is a sufficiently rich set of random variables approximating
the multiple stochastic integrals of the corresponding weak Taylor schemes,
generated at each time step. Under the weak convergence criterion, we not
only have considerable freedom to approximate multiple stochastic integrals,
but also need fewer such integrals to achieve a certain order of weak con-
vergence than for the same order of strong convergence: see Kloeden and
Platen (1992/1995b) and Hofmann (1994).

We note that the weak higher-order Taylor schemes involve higher-order
derivatives of a and b. Obviously, it would be desirable to have derivative-
free or Runge-Kutta-type weak schemes. We discuss these in the following
section.

7.2. Weak Runge—Kutta approzximations

A weak second-order Runge—Kutta approzimation that avoids derivatives in
a and b is given by the algorithm

Yoo = Yt (al¥a) + a(¥) 5+ (6(0) + b(r; ) 20
1
+ (b(Y5) = (V) (AWR)? — A) VA (7.6)
with
Yo = Yo+ a(Yyn) A+ b(Y,) AW,
and

YE =Y, +a(Yy) A £b(Y,) VA,

where AW,, can be chosen as in (7.4): see Platen (1984).

Talay (1984) suggested a weak second-order scheme which is not com-
pletely derivative-free, and also requires two random variables at each step.
Another weak second-order scheme that involves the derivative b’ has been
proposed by Milstein (1985), with the form

~ V.oy2 —
Vet = (a(fa) + <Y>)A+b<Y)b<Yn>“—AW—"§——A—)

(i b(Y,) + & b(f/,;)) AW, (7.7)
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where Y,, and AW, are as in (7.6), and
AW,
3

Weak second- and third-order Runge-Kutta-type schemes have been pro-
posed, for instance, by Kloeden and Platen (1992/19955), Mackevicius (1994)
and Komori and Mitsui (1995). There appears to be some scope for future
research in weak higher-order Runge—Kutta schemes, possibly generalizing

Butcher’s rooted tree methods as described, for instance, by Komori ef al.
(1997) and Burrage (1998).

YE =Y, +a(Y,) £ b(Y,)

7.3. Extrapolation methods

In deterministic numerical analysis, extrapolation methods represent an el-
egant way of achieving higher-order convergence by using lower-order meth-
ods, provided the numerical stability of these for a range of step-sizes can
be guaranteed. For the weak second-order approximation of the functional
E(g(XT)), Talay and Tubaro (1990) proposed a Richardson extrapolation of
the form

VA(T)=2E (g (YA(T)>> —E (g (YQA(T))) , (7.8)

where Y®(T) denotes the value at time T of an Euler approximation with
step-size 6. Using Euler approximations with step-sizes § = A and § = 2A,
and then taking the difference (7.8) of their respective functionals, the lead-
ing error coeflicient cancels out, and V;}Q (T') ends up being a weak second-
order approximation.

Further weak higher-order extrapolations have been developed by Kloeden
and Platen (1989). For instance, one obtains a weak fourth-order extrapola-
tion method using

1
Vai = 57 [328 (9 (v2@)) -12E (o (Y*2D)) + £ (g (v*2m))].

(7.9)

where Y(T) is the value at time T of the weak second-order Runge-Kutta

scheme (7.6) with step-size 6. Such weak high-order extrapolations require

the existence of a leading error expansion for functionals of the underly-

ing discrete time weak approximation Y?. Further results on extrapolation

methods can be found in Hofmann (1994), Goodlett and Allen (1994), Kloe-

den, Platen and Hofmann (1995) and Mackevicius (1996).

Artemiev (1985), Miiller-Gronbach (1996), Gaines and Lyons (1997), Bur-
rage (1998) and Mauthner (1998) have derived results on step size con-
trol. Furthermore, Hofmann (1994), Hofmann, Miiller-Gronbach and Ritter
(1998) have considered extrapolation methods with both step-size and order
control. This is another challenging area of practical importance.
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7.4. M-stability and tmplicit weak methods

The comments in Section 6.3 on numerical stability of discrete time ap-
proximations in the context of strong convergence apply equally to weak
schemes. Numerical instability is a problem that arises in both strong and
weak schemes, and similar methods can be used to study it. However, as
we shall see below, it is again much easier to construct a weak method with
satisfactory stability properties than a corresponding strong one.

The crucial advantage in the construction of implicit schemes under the
weak convergence criterion (4.2) lies in the freedom to choose the necessary
random variables to be bounded. This allows us to construct weak schemes
that have fully implicit terms for the noise part of the SDE.

To highlight the importance of this fact, Hofmann and Platen (1994),
Hofmann (1995) and Hofmann and Platen (1996) have considered a complex-
valued test equation with multiplicative noise of Stratonovich type

dX; = (1 —a) A X; dt + Vay X; o dW,, (7.10)

where A = Ay + A2¢ and v = 1 + Y2¢ are complex numbers such that
4% = A. Here W again denotes a real-valued standard Wiener process. The
real-valued parameter « € [0, 2] describes the degree of stochasticity in the
test equation (7.10). For a = 0 we have a purely deterministic equation.
For a« = 1, (7.10) represents a Stratonovich SDE without drift, while for
a = 2 it can be written as an 1t6 SDE with no drift.

Suppose that we can express a given stochastic numerical scheme, to be
applied to the test equation (7.10) with equidistant step-size A, in the re-
cursive form

Yor1 = GAA, a) Yy, (7.11)

where G is a complex-valued random function that does not depend on Yy,
Yy, ..., Yu_1, Yni1. Then we can introduce the M-stability set

'={Ty: 0<a<2},
with stability region
[, ={MA €eC: Re(A) <0,ess, sup|G(AA,a)| < 1}, (7.12)

for a € [0,2]. Whereas the A-stability discussed in Section 6.3 can be linked
to test equations with ‘additive noise’, the term M -stability is used with test
equations that have ‘multiplicative noise’. The ess, sup in (7.12) denotes
the essential supremum with respect to all w € €2, and in practice refers to
the worst case scenario. To check for the worst possible paths is important
because we have to protect a simulation against unstable scenarios. A single
overflow in a large number of simulations can make the whole simulation
study questionable. On the other hand, excluding some extreme simulated
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Fig. 7.1. M-stability set for the simplified Euler scheme

scenarios would certainly bias the result. Therefore it seems natural to judge
stability on a worst case basis.

For the simplified Euler scheme (7.2) the M-stability region is shown in
Figure 7.1. We note that in the deterministic case, o = 0, the region of
stability I'g is a circle and coincides with the A-stability region discussed in
Section 6.3. For a > 0 we note that the stability region of the simplified
Euler scheme shrinks, and no longer includes the a-axis. This is a crucial
observation telling us that reduction of the step-size A might lead us to
exit the stability region. In the deterministic case, this is not the typical
behaviour of a scheme. Such behaviour is usually observed only when the
step-sizes are close to machine precision. In the stochastic case, the noise
modelled by the dynamics of the SDE can already generate this type of
instability for large step sizes, and has to be taken rather seriously. We
see from Figure 7.1 that, for a = 2, the simplified Euler scheme has no
M -stability at all. This is the martingale case for X, which is typical in
asset price modelling in finance, where multiplicative noise arises naturally:
see Hofmann et al. (1992). We also note that random walks and binomial
trees which are typically implemented in many applications, particularly in
finance, have the structure of the simplified Euler scheme and can therefore
suffer serious instabilities.
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7.5. Implicit and predictor—corrector methods

Implicit and predictor—corrector methods have much larger stability regions
than most explicit schemes, and turn out to be better suited to simula-
tion task with potential stability problems. Some results on implicit weak
schemes in a weak context can be found in Milstein (1985, 19884, 19954),
Drummond and Mortimer (1991) and Platen (1995). In Kloeden and Platen
(1992/1995b) the following family of weak implicit Euler schemes, converg-
ing with weak order 3 = 1.0, has been discussed:

Yoy1 = Y+ {f an(Yn-i-l) + (1 - f) &W(Yn)} A

T {b(Yarn) + (1= ) b(Ya)} AW, (7.13)
Here AW,, can be chosen as in (7.1), and we have to set
an(y) = aly) —nb(y) v'(y) (7.14)

for £ € [0,1] and n € [0,1]. For £ =1 and n = 0, (7.13) leads to the drift
implicit Euler scheme. The choice & = 1 = 0 gives us the simplified Euler
scheme, whereas for £ = = 1 we have the fully implicit Euler scheme.
It can be shown, for instance, that the fully implicit Euler scheme is A-
stable in the sense of Section 6.3. The exterior of the AM-stability set of the
drift implicit Euler scheme with respect to test equation (7.10) is shown in
Figure 7.2. One notes that the M-stability set is much larger in Figure 7.2
than in Figure 7.1. However, the a-axis is not included in this set and
one has to choose a step-size with a value above a critical minimal size to
guarantee stability.

A family of implicit weak order 2.0 schemes has been proposed by Milstein
(1995a) with

Vo1 = Yo+ {aYoi)+ (0 =8aYn)tA
+3b(Y,) b (Vo) (AW,)? — A)/2

+ {b(Ya) + L (F/ (Vo) + (1 - 26) @ (Ya)) A} AW,

A2
FO-20{Bd (V) + (1= B)d (Vo)) 5 (T15)
where AW, is chosen as in (7.4).
Kloeden and Platen (1992/1995b) suggested the following Runge-Kutta-

type implicit weak order 2.0 scheme:
Yo = Yo+ (a(Ya)+a(Yni)) A
AW,
4
+(b(Ry) — b(R_)) ((AW,)? — A)/4, (7.16)

+(b(Ry) +b(R_) + 2b(Yy))
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Fig. 7.2. Exterior of M-stability set for the drift implicit Euler scheme

Ry =Y, +a(Yy) A+b(Y,) VA

and

Uy =Y, £b(Y,) VA,

where AW, is chosen as in (7.4).

In deterministic numerical analysis, predictor-corrector methods are of-
ten used because of their numerical stability, inherited from the implicit
counterpart of their corrector scheme. With a predictor—corrector method
one is not forced to solve an algebraic equation at each time step as with
an implicit method. For instance, a weak second-order predictor—corrector
method (see Platen (1995)) is given by the corrector

Yo=Y, + % (a( _n—}—l) + a(Yn)) + Y (717)
with
U = b(¥n)+ 3 (al¥a) (V) + FOX(Ya) V' (Yn)) AW,

FB(Y) B (Vo) ((AWTL)2 - A) /2
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and the predictor

Yort = Yata(Yo)A+v, + (al¥n) d (V) + F02(Ya) " (Vo)) &
+b(Yn) d (Ya) AW,A /2,

where AW, is as in (7.4).

A list of references on schemes with implicit features and stochastic nu-
merical stability has already been given in Section 6.3. Further publications
dealing with aspects of weak approximations include Fahrmeier (1974), Mil-
stein (1978), Platen (198056), Gladyshev and Milstein (1984), Platen (1984),
Talay (1984), Milstein (1985), Ventzel, Gladyshev and Milstein (1985), Ha-
worth and Pope (1986), Talay (1986), Milstein (1988a), Talay (1990), Talay
and Tubaro (1990), Kloeden and Platen (19916), Mikulevicius and Platen
(1991), Kloeden, Platen and Hofmann (1992¢), Kannan and Wu (1993), Hof-
mann (1994), Hofmann and Platen (1994), Mackevicius (1994), Komori and
Mitsui (1995), Bally and Talay (19964, 19965), Hofmann and Platen (1996),
Kohatsu-Higa and Ogawa (1997) and Milstein and Tretjakov (1997).

Let us emphasize again that there is no point in trying to improve the
efficiency of a simulation if its stability is not satisfactorily established.

7.6. Monte Carlo simulations of SDEs

There exists a well-developed literature on general Monte Carlo methods.
We might mention, among others, Hammersley and Handscomb (1964), Er-
makov (1975), Sabelfeld (1979), Rubinstein (1981), Ermakov and Mikhailov
(1982), Kalos and Whitlock (1986), Bratley, Fox and Schrage (1987), Bou-
leau (1990), Law and Kelton (1991), Ross (1991), Mikhailov (1992) and
Fishman (1992). In focusing on weak numerical discrete time approxima-
tions of SDEs, one obtains greater insight into the stochastic analytic struc-
ture of the problem than one usually does in general Monte Carlo prob-
lems. One can exploit martingale representations as in Newton (1994), or
measure transformations as discussed in Milstein (1988a) or Kloeden and
Platen (1992/1995b). These structures allow one to develop highly sophisti-
cated Monte Carlo methods. In many cases these perform extremely well in
circumstances where other methods fail, are difficult to implement or exceed
available computing time.

Functionals of the form

u = E(g9(Xr))

can be approximated by weak approximations, as discussed in the context
of the weak convergence criterion (4.2). One can form a straightforward
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Monte Carlo estimate using the sample average
1 XN
una = > 9(Yr(wr)), (7.18)

with N independent simulated realizations Y (wi), Yr(w2),. .., Yr(wn) of a
discrete time weak approximation Y at time T. The mean error ji then has
the form

p=una — E(9g(XT))

which we can decompose (see Kloeden and Platen (1992/1995b6)) into a
systematic error psys and a statistical error pgtat, such that

= Usys + Hstat, (7-19)

where

Hsys = E(ﬁ)

1 N
= (_]\72:: YT wk ) E(g(XT))
= B(9(¥p)) - Blg(X1)). (7:20)

Obviously, the absolute systematic error |fi| represents the critical variable
under the weak-order convergence criterion (4.2).

For a large number N of simulated independent sample paths of Y, we
can conclude from the Central Limit Theorem that the statistical error pigeat
becomes asymptotically Gaussian with mean zero and variance of the form

Var(ustat) = Var(ft) = % Var(g(YT)). (7.21)

This reveals a significant disadvantage of Monte Carlo methods, because its

deviation
1
Dev(pstat) = 1/ Var(ustat) = 7__N \/ Var(g(Yr)), (7.22)

decreases at only the slow rate N~/2 as N — oco. Thus the length of a
corresponding confidence interval for the error is, for instance, only halved
by a fourfold increase in the number N of simulated realizations.

The Monte Carlo approach is very general and works in almost all circum-
stances. For high-dimensional functionals it is sometimes the only method
of obtaining a result. One pays for this generality by the large sample sizes
required to achieve reasonably accurate estimates.

We note from (7.22) that the length of a confidence interval is also pro-
portional to the square root of the variance of the simulated functional. As
we shall see in the next section, this provides us with an opportunity to
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construct unbiased estimates for u = E(g(Yr)) with much smaller variances
than the raw Monte Carlo functional (7.18).

7.7. Variance reduction techniques

One can increase the efficiency in Monte Carlo simulation for SDEs consider-
ably by using various variance reduction techniques. These reduce primarily
the variance of the random variable actually simulated. There exist many
ways of achieving substantial variance reduction. Only some of them can
be mentioned here. Experience has shown that, to be effective, variance re-
duction techniques need to be adapted and engineered to the given specific
problem.

Some general variance reduction techniques from classical Monte Carlo
theory usually result in only moderate improvements. Techniques that ex-
ploit to a high degree the stochastic analytic structure of the given functional
of an SDFE can easily yield savings in computer time corresponding to factors
of several thousands. Useful references on variance reduction techniques in a
more classical setting include Hammersley and Handscomb (1964), Ermakov
(1975), Boyle (1977), Maltz and Hitzl (1979), Rubinstein (1981), Ermakov
and Mikhailov (1982), Ripley (1983b), Kalos and Whitlock (1986), Bratley
et al. (1987), Chang (1987), Wagner (1987, 19884, 1988b, 1989a, 1989b),
Law and Kelton (1991) and Ross (1991).

In what follows, we first mention some more classical Monte Carlo vari-
ance reduction techniques and then point to stochastic numerical variance
reduction methods that use martingale representations or measure transfor-
mations for functionals of SDEs.

The method of antithetic variates (see, for instance, Law and Kelton
(1991) or Ross (1991)) is a very general method. It uses repeatedly the
random variables originally generated in some symmetric pattern to con-
struct sample paths, say for the driving Wiener process, in such a way that
these offset each others’ noise to some extent in the estimate. The simplest
version of antithetic variates is obtained by using together a Wiener path
realization W(w,. ), and its negative counterpart W(w_) = —W(w,) in the
sample. This reduces the time for the computation of the sample and, using
certain symmetries, one can reduce the variance of the simulated estimators
substantially.

Another general method is through variance reduction by conditioning:
see Law and Kelton (1991). For some o-algebra, or information set, F,
we can interpret the conditional expectation E(g(Xrt)|F) as a variance-
reduced unbiased estimator for the functional E(g(Xr)). The variance is
then reduced according to the inequality

Var(E(g(Xr) | F)) < Var(g(Xr)).
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Here F represents some information about the path of X, for instance that
this path remains in a certain region.

Stratified sampling is another technique that has been widely used in
Monte Carlo simulation: see, for instance, Glynn and Iglehart (1989), Ross
(1991) and Fournie, Lebuchoux and Touzi (1997). A simple version of it
can be described by dividing the whole sample space into M sets of disjoint
events Ap,..., Ay with P(4;) = 1\_14 for all i € {1,...,M}. For example,
assume that the first step of the discrete time weak approximation ends
up in one of the M equally probable states, where each of these events is
indicated by writing Y7 4,, ¢ € {1,..., M} for the final value of Y at time
T. Then we can use the unbiased estimator

1 M
Zl = _M Zg(}/t,Ai)’

i=1

where A4; is the above-mentioned random event. This estimator has variance

ﬁ/j: Var(g(Yr,a,))

Var(Z,) = e

=1
- %Var(g(YT)).

We note that for large M the variance of the estimate Z; will be considerably
smaller than that of the random variable g(Yr).

The rather standard control variate technique is based on the selection of
a random variable £ with known mean E(£) that allows one to construct the
unbiased estimate

Zy = g(Y7) - a(§ — E(£)),
where the parameter

_ COV(Q(YT)a f)
Var(¢)

is chosen to minimize the variance
Var(Zs) = Var(g(Yr)) 4+ o2 Var(¢) — 2a Cov(g(Y7T), £).

Such a control variate can strongly exploit the stochastic analytic structure
of the given functional. It turns out to be very powerful, as is shown, for
example, in Hull and White (1988), Goodlett and Allen (1994), Newton
(1994, 1997) and Heath and Platen (1996).

Another variance reduction technique, the measure transformation method,
was proposed and studied by Milstein (19884, 1995a), Kloeden and Platen
(1992/1995b) and Hofmann et al. (1992). This introduces a new proba-
bility measure P via a Girsanov transformation. The underlying Wiener
process W is then no longer a Wiener process under the measure P. This
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method formally computes the same functional as before, but uses the new
measure P and thus some corresponding Wiener process W. The measure-
transformed estimate can now be expressed under the original measure P,
which then provides an unbiased estimate

dP

where

E(o(Vr) = E ( (¥r) jﬁ)

and ZP represents the Radon—-Nikodym derivative of P with respect to the
original measure P. Since the last relation can be fulfilled by a whole
class of measure transformations, we have gained some degree of freedom
and can seek a ‘best’ choice for P that reduces the variance significantly.
With reasonable knowledge about the qualitative properties of the func-
tional E(g(Y)), this method can achieve considerable variance reductions.

If we summarize the variance reduction techniques discussed above, then
it is apparent that all of them are fairly general and most of them can
be combined with each other. This turns out to be an important property,
because great flexibility is needed to tailor efficient Monte Carlo estimates for
specific functionals. It should be mentioned, however, that there seems to be
no specific generally suitable method that is also highly efficient. Experience
is required to find an appropriate variance-reduced estimator for a given
functional.

'7.8. Quasi-Monte Carlo approach

Within this section we add some comments on the quasi-Monte Carlo ap-
proach, which is another technique for enhancing weak approximation meth-
ods. There is a rich literature on this subject with some reviews, for instance
in Ripley (1983b), Niederreiter (1992) and Niederreiter and Shine (1995).
Applications can be found in Barraquand (1995), Paskov and Traub (1995)
or Joy, Boyle and Tan (1996), among others.

The approach can be illustrated by considering the probability density
function px of the random variable X7 in such a way that the functional to
be computed is expressed in the form

[ o]

u=Blg(Xr) = [ gla)px(e)ds.

—00

Consequently the estimation of the functional u appears as a numerical
integration problem over (—oo,00). If we denote by Fy, the distribution
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function of X7, then u can be expressed as

u = /Olg (F);;(z)> dz.

A standard Monte Carlo simulation could now evaluate the sum
1N
-1
Sx =7 29 (Fxp ().
1=

where the R;, i € {1,..., N}, are independent uniformly distributed ran-
dom variables. In a quasi-Monte Carlo method these random variables are
replaced by elements from some low-discrepancy sequence or point set: see,
for instance, the book by Niederreiter (1992). Low-discrepancy point sets
such as Sobol, Halton or Faure sequences, discussed for instance in Halton
(1960}, Sobol (1967), Tezuka (1993), Tezuka and Tokuyama (1994), Radovic,
Sobol and Tichy (1996), Tuffin (1996, 1997) and Mori (1998), exhibit fewer
deviations from uniformity compared to uniformly distributed random point
sets. This can generally lead to faster rates of convergence compared to ran-
dom sequences as discussed in Hofmann and Mathé (1997) and Sloan and
Wozniakowski (1998). However, the gain in efficiency is not always balanced
with the bias that may result from the use of these methods. Caution has
to be exerted in dealing with simplistic quasi-Monte Carlo estimates that
could lead to undesirable biases.

8. Further developments and conclusions

In this final section, we comment on promising directions for further re-
search, and briefly mention relevant literature that we have not included so
far. A number of new research areas have been opened up in recent years,
closely related to the area of numerical methods for SDEs.

Discrete time approximations for the numerical analysis of functionals of
ergodic diffusion processes that depend on the corresponding invariant law
were studied by Grorud and Talay (Talay 1987, 1990, 1991, 1995, and Grorud
and Talay 1990, 1996) and Arnold and Kloeden (1996). Here the time
horizon becomes de facto infinite, and one aims to tackle questions related
to the computation of Lyapunov exponents, rotation numbers and other
characteristics of stochastic dynamical systems. The numerical solution of
nonlinear stochastic dynamical systems has been studied by Kloeden, Platen
and Schurz (1991, 1992b) and Kloeden and Platen (1995a).

SDEs with coloured noise were approximated by Manella and Palleschi
(1989), Fox (1991) and Milstein and Tretjakov (1994).

Weak approximations on a bounded domain, which relate to the solution
of a corresponding parabolic partial differential equation, are constructed in
Platen (1983), Milstein (199556, 1995¢, 1996, 1997) and Hausenblas (1999a).
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This appears to be a very promising direction of future research, where
stochastic numerical techniques provide access to efficient numerical solu-
tions of partial differential equations with difficult boundary conditions.
These methods seem to be also applicable in higher dimensions.

Approximations to first exit times of diffusion processes from a region
were considered, for instance, by Platen (1983, 1985) and Abukhaled and
Allen (1998). Related to this are numerical methods for SDEs with reflec-
tion or boundary conditions. These were studied, for instance, by Gerardi,
Marchetti and Rosa (1984), Lépingle (1993), Slominski (1994), Asmussen,
Glynn and Pitman (1995), Petterson (1995), Lépingle (1995) and Hausen-
blas (19995). This is a technically demanding and growing area of research,
where quantities such as local times have to be approximated.

Discrete time approximations for It6 processes with jump component have
already been studied, for instance by Wright (1980), Platen (1982a, 1984),
Maghsoodi and Harris (1987), Mikulevicius and Platen (1988) and Magh-
soodi (1994). Driven by practical applications in finance and insurance, this
area can be expected to develop further in the long-term future.

More generally, the discrete time strong and weak approximation of solu-
tions of SDEs that represent semimartingales was studied by Marcus (1981),
Platen and Rebolledo (1985), Protter (1985), Jacod and Shiryaev (1987),
Mackevicius (1987), Bally (1989a, 19895, 1990), Gyongy (1991) and Kurtz
and Protter (1991a, 1991b). Special emphasis on semimartingale SDEs
driven by Lévy processes, including a-stable processes, was given in the
book by Janicki and Weron (1994), and in papers by Kohatsu-Higa and
Protter (1994), Janicki (1996), Janicki, Michna and Weron (1996), Protter
and Talay (1997) and Tudor and Tudor (1997). Tudor and Tudor (1987)
and Tudor (1989) have also approximated stochastic delay equations.

Approximation schemes for two-parameter SDEs were suggested by Tu-
dor and Tudor (1983), Yen (1988) and Tudor (1992). Numerical exper-
iments and numerical schemes for stochastic partial differential equations
are discussed by Liske (1985), Elliott and Glowinski (1989), Bensoussan,
Glowinski and Rascanu (1990), LeGland (1992), Gaines (1995b), Grecksch
and Kloeden (1996), Ogorodnikov and Prigarin (1996), Gyongy and Nuar-
lart (1997), Werner and Drummond (1997) and Allen, Novosel and Zhang
(1998). In Ma, Protter and Yong (1994), Douglas, Ma and Protter (1996)
and Chevance (1997), numerical methods for forward-backward SDEs have
been studied. This represents yet another new direction of research.

Nonlinear diffusion processes that depend on related temporal and spa-
tial partial differential equations were approximated by Ogawa (1992, 1994,
1995). Approximation schemes for Ito6—Volterra SDEs have been suggested
by Makroglou (1991) and Tudor and Tudor (1995). Averaging principles
were applied to systems of singularly perturbed SDEs by Golec and Ladde
(1990) and Golec (1995, 1997).
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Almost in every area of stochastic modelling with finite-dimensional or
infinite-dimensional dynamics, numerical methods have been or will soon
be developed to provide quantitative results. The difficulties are often very
similar in the different fields, and concern numerical stability, higher-order
efficiency and variance reduction. For well-researched problems the devel-
opment of standard software tools is becoming part of the general scien-
tific work in the area. The construction of stochastic numerical schemes
through symbolic manipulation and related questions were considered, for
instance, by Valkeila (1991), Kloeden et al. (1992¢), Kloeden and Scott
(1993), Kendall (1993), Steele and Stine (1993), Xu (1995) and Cyganowski
(1995, 1996).

It should be emphasized that Monte Carlo simulation in general, and par-
ticularly when it uses discrete time weak approximations of SDEs, represents
by its very nature a parallel algorithm. The numerical analysis for ODEs is
well developed, with an established literature on parallel computation and
supercomputing: see, for example, Burrage (1995). Software packages and
tools for it are already available. Stochastic numerical methods applied in
parallel computation, as discussed in Petersen (1987, 1988), Anderson (1990)
and Hausenblas (1999b), represent another promising area of research.

It is expected that the numerical analysis of SDEs will experience a di-
verse and rapid development during the next few years. One aim of this
paper is to encourage research in this rewarding but demanding interdisci-
plinary field. It involves stochastic calculus, numerical analysis, scientific
computing, statistics and is linked to many applied areas, including finance,
physics and microelectronics. The progress of stochastic modelling in im-
portant fields of application will depend to some extent on our ability to
master the resulting quantitative challenges.
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